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ELECTROMAGNETICS COMPUTATIONS ON THE YEE MESH ARE VERY FAST, WITH A 
CELL UPDATE REQUIRING LESS THAN 3 CORE-NS ON SANDYBRIDGE HARDWARE.  
HOWEVER, IN THE PRESENCE OF NON-GRID-ALIGNED DIELECTRICS OR 
CONDUCTORS, WITH STAIR-STEPPED BOUNDARIES, THE ERROR RISES TO O(DX).  
FOR CONDUCTORS, DEY-MITTRA EMBEDDED BOUNDARIES REDUCE THE ERROR 
TO O(DX^2), WITH O(DX^3) ERROR AVAILABLE THROUGH RICHARDSON 
EXTRAPOLATION.  AS SHOWN HERE, SIMILAR ACCURACY IN EIGENMODE 
FREQUENCIES CAN NOW BE OBTAINED FOR DIELECTRICS WITH NON-GRID-
ALIGNED SURFACES, AND SURFACE FIELDS ARE OBTAINED ACCURATELY AS WELL.  
FINALLY, THE PROPER DEFINITION OF THE MAGNETIC FLUX DIVERGENCE FOR THE 
CONDUCTOR-CUT BOUNDARY CELLS IS FOUND.  SUBTRACTING ITS GRADIENT 
FROM THE CURL-CURL OPERATOR LEAVES A POSITIVE DEFINITE OPERATOR THAT 
CAN BE INVERTED USING A MULTI-LEVEL PRECONDITIONER. 
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Today: embedded boundary methods, fast 
accurate, scalable: dielectrics and metals 

• Historical finite difference 
inaccurate, but metallic 
embedded boundary methods 
recover accuracy 

• Improve frequencies with 
eigenvalue solver but 
u Need Poissonish operator 
u Need to subtract gradient of 

divergence in partial cells 
• Fields also improved 
• Dielectrics improved 
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Standard Yee update can be written in 
matrix form 

• Upward differencing = C 
• Downward differencing = CT 
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Precise Dey-Mittra boundary conditions give 
local  O(Dx), global O(Dx2) 

• DM use integral form of Faraday 
u Multiply E by lengths 
u Divide by area 

• DM not derived but heuristic 
u only Faraday changed 
u B no longer centered so how further 

differenced? 
• (Unpublished) derivation exists 
• Gustafson "theorem" 
• Modifies matrix form 
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Modified CFL condition for Dey-Mittra 
BCs gives transition to O(Dx) 

• Cut-cell matrix elements scale as L/A 
• L/A can be vanishingly small 
• Time domain then requires face 

dropping 
u Pick CFL acceptable CFL reduction 

(Dey-Mittra fraction) 
u Use Gershgorin circle theorem to 

drop faces 
• Result is lower accuracy at high 

resolution (still get parts in 105 through 
Richardson) 
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Frequency extraction: G. R. Werner and J. R. Cary, J. Comp. Phys. 227, 5200-5214 
(2008), http://dx.doi.org/10.1016/j.jcp.2008.01.040. 

T. M. Austin, J. R. Cary, S. Ovtchinnikov, G. R. Werner, and L. Bellantoni, Comput. 
Sci. Disc. 4 015004 doi: 10.1088/1749-4699/4/1/015004 (2011). 



Frequency solver would eliminate transition, 
but want multigrid friendly operator 

• Curl-curl: coupled vector 
components 

• Shift invert requires 
solving 

• Not amenable to multigrid 
solves 

• Direct solvers not scalable 
• Vector calculus gives 

Laplacian, but  
u reaches outside 

simulation 
u unknown for Dey-Mittra 
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Removal of grad-div relies on geometric 
interpretation 

• Know curl curl in Dey-Mittra 
• -del2 comes from subtracting 

off grad-div 
• div can be written in terms of 

cell face areas and volumes 
• Use that to get the Dey-

Mittra -del2 
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CA Bauer, GR Werner, JR Cary, A fast 
multigrid-based electromagnetic 
eigensolver for curved metal boundaries on 
the Yee mesh, xarchive. 



Found rapid convergence for inversion 

• Trilinos ML with GMRES 
• Embedded boundary conversion as fast as grid 

aligned 
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Getting volume right crucial to rapid 
convergence 

1. Random relative errors in volumes 
2. Random errors in volumes (e.g., from 

subsampling) 
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Frequency now always converges as 
O(Dx2) 
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Fields appear to converge nearly as 
O(Dx2) 
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Algorithmic progress in other areas as 
well 

• New, finite difference dielectric algorithm gives 
2nd order error 

• New beam launcher method reduces simulation 
volume 
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New, finite difference dielectric algorithm 
gives 2nd order error 

• Regular 
convergence 
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Equivalent surface currents method 
greatly reduces size of simulated region 

beam direction 

Volume V 

The fields inside the volume V are the same in both simulations.  The top simulation injects current along an entire 
plane; it has to simulate a large region to capture the waves emitted from all that current.  The bottom simulation 
has no currents outside V; current on the surface of V produces the same waves (inside V) that the entire plane 
would produce. Here, the transverse electric field is shown. 

beam injection beam travel beam extraction 
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Progress in finite difference algorithms for 
metallic and dielectric structures and  

• Metallic embedded boundaries: can now use 
multigrid as a preconditioner 

• Dielectric structures: high-order convergence 
seen 

• Computational region for wake field calculations 
for infinite systems greatly reduced in size 
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