
New Features Relevant to LWFA’s

· Higher Order (smoother) Particle
Shapes

· Bessel Beams
· Binary Collision Module

· Tunnel (ADK) and Impact Ionization

· PML absorbing BC

· Dynamic Load Balancing
· Parallel I/O w/ new diagnostics such

as Particle Tracking

osiris framework

· Parallel, Relativistic
& Explicit EM Particle-in-Cell (PIC) Code

· Visualization and Data Analysis Infrastructure
· Developed by the osiris.consortium

⇒ UCLA + IST

OSIRIS -- progress & scaling

Frank Tsung: tsung@physics.ucla.edu
Ricardo Fonseca: ricardo.fonseca@ist.utl.pt

http://exodus.physics.ucla.edu/
http://cfp.ist.utl.pt/golp/epp/

Single Node + Parallel Performance

1

10

100

100 1000 104 105

Measured (Collision)
Measured (Warm)
Optimal

S
pe

ed
 u

p

CPUs

OSIRIS is written in object-oriented Fortran95
and uses MPI (Message Passing Interface) for
parallelism. (more about parallel scaling later)

The code is very efficient in parallel. On
platforms such as the BlueGene cluster @ ANL
and the Atlas cluster @ LLNL, the code is ~ 90%
efficient for > 4,000 CPU’s on Atlas (>90% on
ANL).

The ANL benchmark is done over a very short
time period using an unmodified version of
OSIRIS. A large amount of the parallel overhead
comes from boundary crossing of the drifting
species. The system is ~90% efficient for a
plasma in thermal equilibrium.

100

1000

100 1000

UPIC Speedup
OSIRIS Speedup
Ideal Speedup

CPU #

Bluegene/P, strong scaling up to 32768 CPUs

Strong scaling on LLNL Atlas (AMD)

(From Viktor Decyk)
 512 x 512 x 256 cells
 16 ppc (2 electron species, colliding)

(230, or ~109 particles)
 425 timesteps

 (Warm Case:)

 512 x 512 x 512 cells
 8 ppc (230, or ~109 particles)
 600 timesteps

Efficient Scaling for massively parallel systems

node 0 node 1 node 2 node 3

— Communication using MPI

parallelization of FDTD EM-PIC codes
Well suited for parallelization

• Only local data required due to
causality (i.e., information cannot
propagate faster than c)

• Domain Decomposition should scale
well for most cases (communication
pattern is the same for 4 CPU’s or
40,000 CPU’s)

However, the “load” on each node
scales linearly with the number of
particles in each node. Therefore,
partition the simulation box using the
spatial information is not enough.

Reducing this imbalance is critical for
larger supercomputers because the
effects of a single computational
hotspot will be greatly amplified as
the # of processors increases.

Furthermore, for some problems,
static load balance is not sufficient.
For these systems, dynamic load
balancing is critical!!

Dynamic load balance in OSIRIS
Node Boundaries

Load estimate considering particles
per vertical slice

Cell calculations (field solver) can be
considered by including an effective cell
weight. Both this weight and the # of steps
between load balance checks can be
adjusted by the user via the input deck.

only particles particles + cells

α = 1.5

Parallel performance -- exploding sphere

To
ta

l S
im

ul
at

io
n

Ti
m

e
[s

]

0

100

200

300

400

500

600

700

800

128 64 32 16 8

No dynamic load balance
Particles only
Particles and Grids

Iterations Between Load Balance

N
um

be
r o

f P
ar

tic
le

s

0

2 105

4 105

6 105

8 105

1 106

0 500 1000 1500 2000 2500 3000

Fixed Boundaries
Dynamic Load Balance

Iteration
Min. Load Max. Load

• Particles & grids ~ 50%, and better than particles
only load balance

• weak dependence on nload balance between 8 and 64.
nload balance ~ 64 iterations yields good results

• Performance boost ≳ 2

• other scenarios can be as high as 4

performance

Diagnostics & Visualizations
Over the years there has been a
fairly extensive set of diagnostics
and visualization tools developed
for the OSIRIS code.

Currently, OSIRIS outputs via the
HDF5 file format, and the primary
visualization/postprocessing tool is
IDL (and occasionally OpenDX,
Matlab and VisIT (demo later!!)).

One example of our diagnostics
r e l e v a n t t o t h e a d v a n c e d
accelerator community is that of
the particle tracking, or the detailed
study of particle orbits for a
selected group of particles. Two
examples of this diagnostic is
shown on the right. (LWFA and
relativistic shock)

SciDAC Meeting, 2008

Technically challenging

• Subset of ~103 particles in ~109

• Storing information for every particle
not feasible

• 104 iter. × 109 part. ⇒ ~ 500 TB

Relevant physics associated
with small subset of particles

• Record detailed 7D phase-space
of “interesting” particles

Particle tracking

find interesting
particles

run simulation
again

follow interesting
particles

run simulationtag all particles

visualize
tracking

information

Control discrete particle noise &
numerical self-heating

• Increase number of particles per cell

• Use high-order particle weighting

High-order particle weighting
E

n
e

rg
y

C
o

n
se

rv
a

tio
n

10-8

10-7

10-6

10-5

10-4

100 101 102 103 104 105

Iterations

1

4

16

64

Particles per cell

2.93 10-5

2.41 10-5

Ops Linear Quadratic Cubic
1D 4 15 27
2D 9 37 69
3D 18 83 187

~ 4.6 ×

-2 -1 0 1 2

0.2

0.4

0.6

0.8

1.0S(x)

x [cell]

Measured performance:

• 3D quadratic ~ 1.85 × slower
than 3D linear

performance

(The benefits of higher order particle
shapes will be addressed later by Estelle
and I will not say too much here, other
than to say that it is implemented in OSIRIS.)

SciDAC Meeting, 2008

Future Directions -- What’s next?

• Parallel I/O with HDF5 -- Underway

• Optimization (e.g. modified particle pushers)
for future architectures, e.g., GPU’s, Cell
processors, etc...

